A review about the effects of environmental anthropogenic changes in the trophic interactions in marine ecosystems of the latitudinal gradient Southwest Atlantic - Antarctica
AIP
PDF (Español (España))

Keywords

Interacciones tróficas
Cambios ambientales
Cambios antropogénicos
Ecosistema marino
Atlántico Sudoccidental
Antártida

How to Cite

Marina, T. I., & Saravia, L. A. (2022). A review about the effects of environmental anthropogenic changes in the trophic interactions in marine ecosystems of the latitudinal gradient Southwest Atlantic - Antarctica. Anales Del Instituto De La Patagonia, 50. https://doi.org/10.22352/AIP2022

Abstract

Los efectos ocasionados por los cambios ambientales antropogénicos en las comunidades de los ecosistemas marinos han sido y siguen siendo motivo de diversas líneas de investigación. En los últimos años se ha evidenciado la importancia de considerar las interacciones tróficas para comprender mejor los efectos de dichos cambios en los ecosistemas marinos. En este trabajo de revisión nos propusimos resumir el estado de conocimiento sobre las interacciones tróficas y los principales efectos de los cambios  ambientales antropogénicas sobre las mismas ciertos para ecosistemas marinos que conforman un gradiente latitudinal Atlántico Sudoccidental - Antártida. Estos ecosistemas son: Golfo San Jorge (45º - 47º S, 65º - 68º O), Área Marina Protegida Namuncurá - Banco Burdwood (54º S, 59º O), Canal Beagle (54º S, 68º O) y Caleta Potter (62º S, 58º O). Además, proponemos perspectivas de investigación para mejorar la comprensión acerca de cómo las perturbaciones ambientales antropogénicas afectan la compleja red de interacciones presa-depredador que ocurre en cada uno de los ecosistemas del gradiente analizado.

https://doi.org/10.22352/AIP2022
PDF (Español (España))

References

Almandoz, G.O., Cefarelli, A.O., Diodato, S., Montoya, N.G., Benavides, H.R., Carignan, M., & Hernando, M. (2019). Harmful Phytoplankton in the Beagle Channel (South America) as a Potential Threat to Aquaculture Activities. Marine Pollution Bulletin, 145: 105–17. https://doi.org/10.1016/j.marpolbul.2019.05.026.

Arkhipkin, A., & Laptikhovsky, V. (2013). From Gelatinous to Muscle Food Chain: Rock Cod Patagonotothen Ramsayi Recycles Coelenterate and Tunicate Resources on the Patagonian Shelf. Journal of Fish Biology, 83(5): 1210–20. https://doi.org/10.1111/jfb.12217.

Bascompte, J., Melián, C.J., & Sala, E. (2005). Interaction Strength Combinations and the Overfishing of a Marine Food Web. Proceedings of the National Academy of Sciences, 102(15): 5443–47. https://doi.org/10.1073/ pnas.0501562102.

Barrera-Oro, E., Moreira, E., Seefeldt, M.A., Valli Francione, M., & Quartino, M.L. (2019). The importance of macroalgae and associated amphipods in the selective benthic feeding of sister rockcod species Notothenia rossii and N. coriiceps (Nototheniidae) in West Antarctica. Polar Biology, 42(2): 317-334.

Belgrano, A., Scharler, U.M., Dunne, J., & Ulanowicz, R.E. (2005). Aquatic Food Webs: An Ecosystem Approach (1ª edn.).

Oxford, England: Oxford Editorial.

Biancalana, F., & Torres, A.I. (2011). Variations of Mesozooplankton Composition in a Eutrophicated Semi-Enclosed System (Encerrada Bay, Tierra Del Fuego, Argentina). Brazilian Journal of Oceanography, 59(2): 195–99. https://doi.org/10.1590/S1679-87592011000200008.

Borrelli, J.J., Allesina, S. , Amarasekare, P. , Arditi, R., Chase, I., Damuth, J. , & Holt, R.D. (2015). Selection on Stability Across Ecological Scales. Trends in Ecology & Evolution, 30(7): 417–25. https://doi.org/10.1016/j.tree.2015.05.001.

Briand, F., & Cohen, J. (1987). Environmental Correlates of Food Chain Length. Science, 238(4829): 956-960. https:// www.science.org/doi/abs/10.1126/science.3672136.

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., & West, G.B. (2004). Toward a Metabolic Theory of Ecology. Ecology, 85(7): 1771–89. https://doi.org/10.1890/03-9000.

Bulgin, C.E., Merchant, C.J., & Ferreira, D. (2020). Tendencies, Variability and Persistence of Sea Surface Temperature Anomalies. Scientific Reports, 10(1): 7986. https://doi.org/10.1038/s41598-020-64785-9.

Byrnes, J.E., Reynolds, P.L., & Stachowicz, J.J. (2007). Invasions and Extinctions Reshape Coastal Marine Food Webs.

PLOS ONE, 2(3): e295. https://doi.org/10.1371/journal.pone.0000295.

Cohen, J.E., & Stephens, D.W. (1978). Food Webs and Niche Space (1ª edn.). Princeton, USA: Princeton University Press. Cordone, G., Marina, T.I., Salinas, V., Doyle, S.R., Saravia, L.A., & Momo, F.R. (2018). Effects of Macroalgae Loss in an Antarctic Marine Food Web: Applying Extinction Thresholds to Food Web Studies. PeerJ, 6: e5531. https://

doi.org/10.7717/peerj.5531.

Cordone, G., Salinas, V., Marina, T.I., Doyle, S.R., Pasotti, F., Saravia, L.A., & Momo, F.R. (2020). Green Vs Brown Food Web: Effects of Habitat Type on Multidimensional Stability Proxies for a Highly-Resolved Antarctic Food Web. Food Webs, 25: e00166. https://doi.org/10.1016/j.fooweb.2020.e00166.

Dans, S.L., Cefarelli, A.O., Galván, D.E., Góngora, M.E., Martos, P., Varisco, M.A., Alvarez Colombo, G.L., … & Zárate, M.D. (2021). El Golfo San Jorge como área prioritaria de investigación, manejo y conservación en el marco de la Iniciativa Pampa Azul. Investigación y Ciencia, 71: 21-43.

de Young, B., Barange, M., Beaugrand, G., Harris, R., Perry, R.I., Scheffer, M., & Werner, F. (2008). Regime Shifts in Marine Ecosystems: Detection, Prediction and Management. Trends in Ecology & Evolution, 23(7): 402–9. https:// doi.org/10.1016/j.tree.2008.03.008.

Dunne, J.A., Williams, R.J., & Martinez, N.D. (2002). Network Structure and Biodiversity Loss in Food Webs: Robustness Increases with Connectance. Ecology Letters, 5(4): 558–67. https://doi.org/10.1046/j.1461-0248.2002.00354.x.

Eklöf, A., Tang, S., & Allesina, S. (2013). Secondary Extinctions in Food Webs: A Bayesian Network Approach. Methods in Ecology and Evolution, 4(8): 760–70. https://doi.org/10.1111/2041-210X.12062.

Eklöf, J.S., Sundblad, G., Erlandsson, M., Donadi, S., Hansen, J.P., Eriksson, B.K., & Bergström, U. (2020). A Spatial Regime Shift from Predator to Prey Dominance in a Large Coastal Ecosystem. Communications Biology, 3(1): 1–9. https://doi.org/10.1038/s42003-020-01180-0.

Emmerson, M., & Yearsley, J.M. (2004). Weak Interactions, Omnivory and Emergent Food-Web Properties. Proceedings of the Royal Society B: Biological Sciences, 271(1537): 397–405. https://doi.org/10.1098/rspb.2003.2592.

Falabella, V. (2017). Área Marina Protegida Namuncurá-Banco Burdwood. Contribuciones Para La Línea de Base y El Plan de Manejo (1ª edn.). Jefatura de Gabinete de Ministros. Buenos Aires, Argentina.

Fernández, D.A., Ciancio, J., Ceballos, S.G., Riva-Rossi, C., & Pascual, M.A. (2010). Chinook Salmon (Oncorhynchus Tshawytscha, Walbaum 1792) in the Beagle Channel, Tierra Del Fuego: The Onset of an Invasion. Biological Invasions, 12(9): 2991–97. https://doi.org/10.1007/s10530-010-9731-x.

Fioramonti, N.E., Ribeiro Guevara, S., Becker, Y.A., & Riccialdelli, L. (2022). Mercury Transfer in Coastal and Oceanic Food Webs from the Southwest Atlantic Ocean. Marine Pollution Bulletin, 175: 113365. https://doi.org/10.1016/j. marpolbul.2022.113365.

Franco, B.C., Palma, E.D., Combes, V., Acha, E.M., & Saraceno, M. (2018). Modeling the Offshore Export of Subantarctic Shelf Waters From the Patagonian Shelf. Journal of Geophysical Research: Oceans, 123(7): 4491–4502. https:// doi.org/10.1029/2018JC013824.

Funes, M. (2020). Efectos de La Pesca de Arrastre Sobre La Estructura Trófica Del Norte Del Golfo San Jorge. Tesis de doctorado. Puerto Madryn, Argentina: Universidad Nacional San Juan Bosco.

Funes, M., Marinao, C., & Galván, D.E. (2019). Does Trawl Fisheries Affect the Diet of Fishes? A Stable Isotope Analysis Approach. Isotopes in Environmental and Health Studies, 55(4): 327–43. https://doi.org/10.1080/1025601 6.2019.1626381.

Funes, M., Saravia, L.A., Cordone, G., Iribarne, O.O., & Galván, D.E. (2022). Network Analysis Suggests Changes in Food Web Stability Produced by Bottom Trawl Fishery in Patagonia. Scientific Reports, 12(1): 10876. https://doi. org/10.1038/s41598-022-14363-y.

García Alonso, V.A., Brown, D., Martín, J., Pájaro, M., & Capitanio, F.L. (2018). Seasonal Patterns of Patagonian Sprat Sprattus Fuegensis Early Life Stages in an Open Sea Sub-Antarctic Marine Protected Area. Polar Biology, 41(11): 2167–79. https://doi.org/10.1007/s00300-018-2352-z.

Gil, M.N., Torres, A.I., Amin, O., & Esteves, J.L. (2011). Assessment of Recent Sediment Influence in an Urban Polluted Subantarctic Coastal Ecosystem. Beagle Channel (Southern Argentina). Marine Pollution Bulletin, 62(1): 201–7. https://doi.org/10.1016/j.marpolbul.2010.10.004.

Góngora, M.E., González-Zevallos, D., Pettovello, A., & Mendía, L. (2012). Caracterización de Las Principales Pesquerías Del Golfo San Jorge Patagonia, Argentina. Latin American Journal of Aquatic Research, 40(1): 1–11.

Gutt, J., Isla, E., Xavier, J.C., Adams, B.J., Ahn, I., Cheng, C.-H., Colesie, C., … & Wall, D.H. (2021). Antarctic Ecosystems in Transition Life Between Stresses and Opportunities. Biological Reviews, 96(3): 798–821. https://doi. org/10.1111/brv.12679.

Hagstrom, G.I., & Levin, S.A. (2017). Marine Ecosystems as Complex Adaptive Systems: Emergent Patterns, Critical Transitions, and Public Goods. Ecosystems, 20(3): 458–76. https://doi.org/10.1007/s10021-017-0114-3.

Hall, S.J., & Raffaelli, D.G. (1997). Food Web Patterns: What Do We Really Know? In A.C., Gange & V.K. Brown (Eds.), Multitrophic Interactions in Terrestrial Systems (pp. 395-417). Blackwells.

Halpern, B.S., Selkoe, K.A., Micheli, F., & Kappel, C.V. (2007). Evaluating and Ranking the Vulnerability of Global Marine Ecosystems to Anthropogenic Threats. Conservation Biology, 21(5): 1301–15. https://doi.org/10.1111/j.1523- 1739.2007.00752.x.

Jacob, U., Thierry, A., Brose, U., Arntz, W.E., Berg, S., Brey, T., Fetzer, I., … & Dunne, J.E. (2011). The Role of Body Size in Complex Food Webs: A Cold Case. Advances in Ecological Research, 45:181–223. https://doi.org/http://dx.doi. org/10.1016/B978-0-12-386475-8.00005-8.

Jacquet, C., Moritz, C., Morissette, L., Legagneux, P., Massol, F., Archambault, P., & Gravel, D. (2016). No Complexity stability Relationship in Empirical Ecosystems. Nature Communications, 7(1): 12573. https://doi.org/10.1038/ ncomms12573.

Johnson, S., Domínguez-García, V., Donetti, L., & Muñoz, M.A. (2014). Trophic Coherence Determines Food-Web Stability. Proceedings of the National Academy of Sciences, 111(50): 17923–28. https://doi.org/10.1073/pnas.1409077111.

Kortsch, S., Frelat, R., Pecuchet, L., Olivier, P., Putnis, I., Bonsdorff, E., Ojaveer, H., … & Nordström, M.C. (2021). Disentangling Temporal Food Web Dynamics Facilitates Understanding of Ecosystem Functioning. Journal of Animal Ecology, 90(5): 1205–16. https://doi.org/10.1111/1365-2656.13447.

Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A.V., & Aschan, M. (2015). Climate Change Alters the Structure of Arctic Marine Food Webs Due to Poleward Shifts of Boreal Generalists. Proceedings of the Royal Society B: Biological Sciences, 282(1814): 20151546. https://doi.org/10.1098/rspb.2015.1546.

Landi, P., Minoarivelo, H.O., Brännström, Å., Hui, C,.& Dieckmann, U. (2018). Complexity and StabilityStability of Adaptive Ecological Networks: A Survey of the Theory in Community Ecology. In P. Mensah, D. Katerere, S. Hachigonta & A. Roodt (Eds.), Systems Analysis Approach for Complex Global Challenges (pp. 209–48). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-71486-8_12.

Leemput, I.A., van Nes, E.H., & Scheffer, M. (2015). Resilience of Alternative States in Spatially Extended Ecosystems.

PLOS ONE, 10(2): e0116859. https://doi.org/10.1371/journal.pone.0116859.

Lovrich, G. (2014). Línea de Base Sobre Las Unidades Ecológicas Del Mar Argentino y Sus Pesquerías Asociadas. Informe elaborado en el marco de la etapa de preparación del proyecto de inversión GEF/FAO. https://doi. org/10.13140/RG.2.2.20638.59201.

Lovrich, G.A. (1997). La Pesquería Mixta de Las Centollas Lithodes Santolla y Paralomis Granulosa (Anomura: Lithodidae) En Tierra Del Fuego, Argentina. Investigaciones Marinas, 25: 41–57. https://doi.org/10.4067/ S0717-71781997002500004.

Marina, T.I. (2021). La Red Trófica Del AMP: Base de Datos y Resultados Preliminares. Taller Científico AMP Namuncurá

- Banco Burdwood.

Marina, T.I., Saravia, L.A., Cordone, G., Salinas, V., Doyle, S.R., & Momo, F.R. (2018a). Architecture of Marine Food Webs: To Be or Not Be a ‘Small-World’. PLOS ONE, 13(5): e0198217. https://doi.org/10.1371/journal.pone.0198217.

Marina, T.I., Salinas, V., Cordone, G., Campana, G., Moreira, E., Deregibus, D., Torre, L. … & Momo, F.R. (2018b). The Food Web of Potter Cove (Antarctica): Complexity, Structure and Function. Estuarine, Coastal and Shelf Science, 200: 141–51. https://doi.org/10.1016/j.ecss.2017.10.015.

Martinez, N.D. (1993). Effects of Resolution on Food Web Structure. Oikos, 66(3): 403–12. https://doi.org/10.2307/3544934. Matano, R.P., Palma, E.D., & Combes, V. (2019). The Burdwood Bank Circulation. Journal of Geophysical Research: Oceans,

(10): 6904–26. https://doi.org/10.1029/2019JC015001.

May, R. (1973). Stability and Complexity in Model Ecosystems (1ª edn.). Princeton, USA: Princeton University Press. McCarthy, A.H., Peck, L.S., Hughes, K.A., & Aldridge, D.C. (2019). Antarctica: The Final Frontier for Marine Biological

Invasions. Global Change Biology, 25(7): 2221–41. https://doi.org/10.1111/gcb.14600.

McCormack, S.A., Melbourne-Thomas, J., Trebilco, R., Blanchard, J.L., & Constable, A. (2020). Alternative Energy Pathways in Southern Ocean Food Webs: Insights from a Balanced Model of Prydz Bay, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 174: 104613. https://doi.org/10.1016/j.dsr2.2019.07.001.

Meredith, M.P., & King, J.C. (2005). Rapid Climate Change in the Ocean West of the Antarctic Peninsula During the Second Half of the 20th Century. Geophysical Research Letters, 32(19). https://doi.org/10.1029/2005GL024042

Neutel, A-M., Heesterbeek, J.A.P., van de Koppel, J., Hoenderboom, G., Vos, A., Kaldeway, C., Berendse, F., & de Ruiter,

P.C. (2007). Reconciling Complexity with Stability in Naturally Assembling Food Webs. Nature, 449(7162): 599–602. https://doi.org/10.1038/nature06154.

Nilsson, K.A., & McCann, K.S. (2016). Interaction Strength Revisited clarifying the Role of Energy Flux for Food Web Stability. Theoretical Ecology, 9(1): 59–71. https://doi.org/10.1007/s12080-015-0282-8.

Olivier, P., & Planque, B. (2017). Complexity and Structural Properties of Food Webs in the Barents Sea. Oikos, 126(9): 1339–46. https://doi.org/10.1111/oik.04138.

Ortiz, M., Hermosillo-Nuñez, B., González, J., Rodríguez-Zaragoza, F., Gómez, I., & Jordán, F. (2017). Quantifying Keystone Species Complexes: Ecosystem-based Conservation Management in the King George Island (Antarctic Peninsula). Ecological Indicators, 81: 453–60. https://doi.org/10.1016/j.ecolind.2017.06.016.

Padovani, L.N., Viñas, M.D., Sánchez, F., & Mianzan, H. (2012). Amphipod-Supported Food Web: Themisto Gaudichaudii, a Key Food Resource for Fishes in the Southern Patagonian Shelf. Journal of Sea Research, 67(1): 85–90. https://doi.org/10.1016/j.seares.2011.10.007.

Pascual, M., & Dunne, J.A. (2005). Ecological Networks: Linking Structure to Dynamics in Food Webs (1ª edn.). Oxford, USA: Oxford University Press.

Pasotti, F., Saravia, L.A., De Troch, M., Tarantelli, M.S., Sahade, R., & Vanreusel, A. (2015). Benthic trophic interactions in an Antarctic shallow water ecosystem affected by recent glacier retreat. PLOS ONE, 10(11), e0141742.

Pérez-Matus, A., Ospina-Alvarez, A., Camus, P.A., Carrasco, S.A., Fernández, M., Gelcich, S., Godoy, N. … & Navarrete,

S.A. (2017). Temperate Rocky Subtidal Reef Community Reveals Human Impacts Across the Entire Food Web.

Marine Ecology Progress Series, 567: 1–16. https://doi.org/10.3354/meps12057.

Pimm, S.L. (1980). Properties of Food Webs. Ecology, 61(2): 219–25. https://doi.org/10.2307/1935177.

Quartino, M.L., Zaixso, H.E., & Boraso de Zaixso, A.L. (2005). Biological and environmental characterization of marine macroalgal assemblages in Potter Cove, South Shetland Islands, Antarctica. Botanica Marina, 48(3): 187-197. Riccialdelli, L., Becker, Y.A., Fioramonti, N.E., Torres, M., Bruno, D.O., Raya Rey, A., & Fernández, D.A. (2020). Trophic Structure of Southern Marine Ecosystems: A Comparative Isotopic Analysis from the Beagle Channel to the

Oceanic Burdwood Bank Area Under a Wasp-Waist Assumption. Marine Ecology Progress Series, 655: 1–27. https://doi.org/10.3354/meps13524.

Riccialdelli, L., Newsome, S.D., Fogel, M.L., & Fernández, D.A. (2017). Trophic Interactions and Food Web Structure of a Subantarctic Marine Food Web in the Beagle Channel: Bahía Lapataia, Argentina. Polar Biology, 40(4): 807–21. https://doi.org/10.1007/s00300-016-2007-x.

Riva Rossi, C.M., Pascual, M.A., Aedo Marchant, E., Basso, N., Ciancio, J.E., Mezga, B., Fernández, D.A., & Ernst-Elizalde, B. (2012). The Invasion of Patagonia by Chinook Salmon (Oncorhynchus Tshawytscha): Inferences from Mitochondrial DNA Patterns. Genetica, 140(10): 439–53. https://doi.org/10.1007/s10709-012-9692-3.

Rocha, J.C., Peterson, G., Bodin, Ö, & Levin, S. (2018). Cascading Regime Shifts Within and Across Scales. Science, 362(6421): 1379–83. https://doi.org/10.1126/science.aat7850.

Rodriguez, I.D., Marina, T.I., Schloss, I.R., & Saravia, L.A. (2022). Marine Food Webs Are More Complex but Less Stable in Sub-Antarctic (Beagle Channel, Argentina) Than in Antarctic (Potter Cove, Antarctic Peninsula) Regions. Marine Environmental Research, 174: 105561. https://doi.org/10.1016/j.marenvres.2022.105561.

Rossi, L., Caputi, S., Calizza, E., Careddu, G., Oliverio, M., Schiaparelli, S., & Costantini, M.L. (2019). Antarctic Food Web Architecture Under Varying Dynamics of Sea Ice Cover. Scientific Reports, 9(1): 12454. https://doi.org/10.1038/ s41598-019-48245-7.

Sahade, R., Lagger, C., Torre, L., Momo, F.R., Monien, P., Schloss, I., Barnes, D.K.A., … & Abele, D. (2015). Climate Change and Glacier Retreat Drive Shifts in an Antarctic Benthic Ecosystem. Science Advances, 1(10): e1500050. https:// doi.org/10.1126/sciadv.1500050.

Schejter, L., Genzano, G., Gaitán, E., Perez, C.D., & Bremec, C.S. (2020). Benthic Communities in the Southwest Atlantic Ocean: Conservation Value of Animal Forests at the Burdwood Bank Slope. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(3): 426–39. https://doi.org/10.1002/aqc.3265.

Schejter, L., Rimondino, C., Chiesa, I., Díaz de Astarloa, J.M., Doti, B., Elías, R., Escolar, M. … & Bremec, C.S. (2016). Namuncurá Marine Protected Area: An Oceanic Hot Spot of Benthic Biodiversity at Burdwood Bank, Argentina. Polar Biology, 39(12): 2373–86. https://doi.org/10.1007/s00300-016-1913-2.

Shurin, J.B., Clasen, J.L., Greig, H.S., Kratina, P., & Thompson, P.L. (2012). Warming Shifts Top-down and Bottom-up Control of Pond Food Web Structure and Function. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1605): 3008–17. https://doi.org/10.1098/rstb.2012.0243.

Stouffer, D.B., & Bascompte, J. (2011). Compartmentalization Increases Food-Web Persistence. Proceedings of the National Academy of Sciences, 108(9): 3648–52. https://doi.org/10.1073/pnas.1014353108.

Tatian, M., Sahade, R., & Esnal, G. B. (2004). Diet components in the food of Antarctic ascidians living at low levels of primary production. Antarctic Science, 16(2), 123-128.

Tomczak, M.T., Müller-Karulis, B., Blenckner, T., Ehrnsten, E., Eero, M., Gustafsson, B., Norkko, A., Otto, S.A., Timmermann, K., & Humborg, C. (2022). Reference State, Structure, Regime Shifts, and Regulatory Drivers in a Coastal Sea over the Last Century: The Central Baltic Sea Case. Limnology and Oceanography, 67(S1): S266–84. https:// doi.org/10.1002/lno.11975.

van Altena, C., Hemerik, L., & de Ruiter, P.C. (2016). Food Web Stability and Weighted Connectance: The Complexity- Stability Debate Revisited. Theoretical Ecology, 9(1): 49–58. https://doi.org/10.1007/s12080-015-0291-7.

Yletyinen, J., Bodin, Ö., Weigel, B., Nordström, M.C., Bonsdorff, E., & Blenckner, T. (2016). Regime Shifts in Marine Communities: A Complex Systems Perspective on Food Web Dynamics. Proceedings of the Royal Society B: Biological Sciences, 283 (1825): 20152569. https://doi.org/10.1098/rspb.2015.2569.

Yorio, P. (2009). Marine Protected Areas, Spatial Scales, and Governance: Implications for the Conservation of Breeding Seabirds. Conservation Letters, 2(4): 171–78. https://doi.org/10.1111/j.1755-263X.2009.00062.x.

This work is licensed under CC BY-NC 4.0

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...