RESISTANCE TO ANTIBIOTICS AND ANTIMICROBIAL ACTIVITY OF BACTERIA ISOLATED FROM ANTARCTIC SOIL
PDF (Español (España))

Keywords

antimicrobials
multidrug resistance
South Shetland Islands

How to Cite

Calisto Ulloa, N. C., Navarro, L. ., Orellana, P., Wiese, G., Gómez, C., Cortés-Cortés, P., Salazar, L., Gutiérrez, A., Gidekel, M., & Corsini, G. (2022). RESISTANCE TO ANTIBIOTICS AND ANTIMICROBIAL ACTIVITY OF BACTERIA ISOLATED FROM ANTARCTIC SOIL. Anales Del Instituto De La Patagonia, 49. https://doi.org/10.22352/AIP202149018

Abstract

In this study, 50 bacterial isolates from pristine Antarctic soil samples from King George and Greenwich Islands (South Shetland Islands) and 25 bacterial isolates from the rhizosphere of Deschampsia antarctica Desv, were characterized for their antimicrobial activity and response to 21 antibiotics.

Antibiotic susceptibility was assayed following the disc diffusion method using different groups of antibiotics: penicillins, cephalosporins, carbapenems, aminoglycosides, quinolones, tetracycline, phenicols, macrolides, sulfonamides, and trimethoprim. Antimicrobial compounds production by the Antarctic bacterial isolates were determined using the agar diffusion method, using a set of human pathogenic bacteria.

The bacterial isolates studied showed resistance to 14 (67%) out of the 21 antibiotics tested. Three bacterial isolates (4%) were resistant to at least one antibiotic and 47 (63%) were multidrug-resistant. Additionally, 26 (35%) bacterial isolates do not show antimicrobial activity and were susceptible to all antibiotics studied. Finally, 27 (36%) bacterial isolates combining antimicrobial activity and multiple resistance to antibiotics. These bacterial isolates on average presented resistance to 10 antibiotics.

The bacterial isolates combining antimicrobial activity and multiple resistance to antibiotics are especially interesting. These two capabilities probably provide a competitive advantage to Antarctic bacteria to enable them to survive in a harsh environment. These microbial isolates are potential new sources of active compounds for the control of pathogenic microorganisms.

https://doi.org/10.22352/AIP202149018
PDF (Español (España))

References

Asencio, G., Lavin, P., Alegría, K., Domínguez, M., Bello, H., González-Rocha, G., & González-Aravena, M. (2014). Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against 2 multi-resistant Gram-negative bacteria. Electronic Journal of Biotechnology, 17(1), 1-5. https://doi.org/10.1016/j.ejbt.2013.12.001

Baricz, A., Teban, A., Chiriac, C. M., Szekeres, E., Farkas, A., Nica, M., Dasc?lu, A., Opri?an, C., Lavin, P., & Coman, C. (2018). Investigating the potential use of an Antarctic variant of Janthinobacterium lividum for tackling antimicrobial resistance in a One Health approach. Scientific Reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-33691-6 Barrientos-Díaz, L., Gidekel, M., & Gutiérrez-Moraga, A. (2008). Characterization of rhizospheric bacteria isolated from Deschampsia antarctica Desv. World Journal of Microbiology and Biotechnology, 24(10), 2289-2296. https://

doi.org/10.1007/s11274-008-9743-1

Bartholomew, J. W., & Mittwer, T. (1952). The Gram stain. Bacteriological Reviews, 16(1), 1-29. https://doi.org/10.1128/ br.16.1.1-29.1952

Bratchkova, A., & Ivanova, V. (2011). Bioactive metabolites produced by microorganisms collected in Antarctica and the Arctic. Biotechnology and Biotechnological Equipment, 25(SUPPL. 4), 1-7. https://doi.org/10.5504/bbeq.2011.0116

Corsini, G., Karahanian, E., Tello, M., Fernandez, K., Rivero, D., Saavedra, J. M., & Ferrer, A. (2010). Purification and characterization of the antimicrobial peptide microcin N: Properties of the antimicrobial peptide microcin N. FEMS Microbiology Letters, 312(2), 119-125. https://doi.org/10.1111/j.1574-6968.2010.02106.x

De Souza, M.-J., Nair, S., Loka Bharathi, P. A., & Chandramohan, D. (2006). Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology, 15(4), 379-384. https://doi.org/10.1007/s10646-006- 0068-2

Jara, D., Bello-Toledo, H., Domínguez, M., Cigarroa, C., Fernández, P., Vergara, L., Quezada-Aguiluz, M., Opazo-Capurro, A., Lima, C. A., & González-Rocha, G. (2020). Antibiotic resistance in bacterial isolates from freshwater samples in Fildes Peninsula, King George Island, Antarctica. Scientific Reports, 10(1), 3145. https://doi.org/10.1038/ s41598-020-60035-0

Knights, H. E., Jorrin, B., Haskett, T. L., & Poole, P. S. (2021). Deciphering bacterial mechanisms of root colonization.

Environmental Microbiology Reports, 13(4), 428-444. https://doi.org/10.1111/1758-2229.12934

Lo Giudice, A., Brilli, M., Bruni, V., De Domenico, M., Fani, R., & Michaud, L. (2007). Bacterium–bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea): Antagonism among psychrotrophic Antarctic marine bacteria. FEMS Microbiology Ecology, 60(3), 383-396. https://doi.org/10.1111/j.1574-6941.2007.00300.x

Maida, I., Fondi, M., Papaleo, M. C., Perrin, E., Orlandini, V., Emiliani, G., de Pascale, D., Parrilli, E., Tutino, M. L., Michaud, L., Lo Giudice, A., Romoli, R., Bartolucci, G., & Fani, R. (2014). Phenotypic and genomic characterization of the Antarctic bacterium Gillisia sp. CAL575, a producer of antimicrobial compounds. Extremophiles, 18(1), 35-49. https://doi.org/10.1007/s00792-013-0590-0

McCann, C. M., Christgen, B., Roberts, J. A., Su, J.-Q., Arnold, K. E., Gray, N. D., Zhu, Y.-G., & Graham, D. W. (2019). Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environment International, 125, 497-504. https://doi.org/10.1016/j.envint.2019.01.034

Na, G., Wang, C., Gao, H., Li, R., Jin, S., Zhang, W., & Zong, H. (2019). The occurrence of sulfonamide and quinolone resistance genes at the Fildes Peninsula in Antarctica. Marine Pollution Bulletin, 149, 110503. https://doi. org/10.1016/j.marpolbul.2019.110503

Núñez-Montero, K., & Barrientos, L. (2018). Advances in antarctic research for antimicrobial discovery: A comprehensive narrative review of bacteria from antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics, 7(4). https://doi. org/10.3390/antibiotics7040090

Núñez-Montero, K., Lamilla, C., Abanto, M., Maruyama, F., Jorquera, M. A., Santos, A., Martinez-Urtaza, J., & Barrientos,

L. (2019). Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery.

Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43960-7

Orellana, P., Pavón, A., Céspedes, S., Salazar, L., Gutiérrez, A., Castillo, D., & Corsini, G. (2017). Draft Genome Sequence of Chilean Antarctic Pseudomonas sp. Strain K2I15. Genome Announcements, 5(33). https://doi.org/10.1128/ genomeA.00771-17

Pavón, A., Orellana, P., Salazar, L., Céspedes, S., Muiño, L., Gutiérrez, A., Castillo, D., & Corsini, G. (2017). Draft Genome Sequence of Bacillus sp. Strain K2I17, Isolated from the Rhizosphere of Deschampsia antarctica Desv. Genome Announcements, 5(33). https://doi.org/10.1128/genomeA.00786-17

Poblete-Morales, M., Rabert, C., Olea, A. F., Carrasco, H., Calderón, R., Corsini, G., & Silva-Moreno, E. (2020). Genome Sequence of Pseudomonas sp. Strain AN3A02, Isolated from Rhizosphere of Deschampsia antarctica Desv., with Antagonism against Botrytis cinerea. Microbiology Resource Announcements, 9(21). https://doi. org/10.1128/MRA.00320-20

Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, Ma. del C., & Glick, B. R. (2021). Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology, 10(6), 475. https:// doi.org/10.3390/biology10060475

Schiwon, K., Arends, K., Rogowski, K. M., Fürch, S., Prescha, K., Sakinc, T., Van Houdt, R., Werner, G., & Grohmann, E. (2013). Comparison of Antibiotic Resistance, Biofilm Formation and Conjugative Transfer of Staphylococcus and Enterococcus Isolates from International Space Station and Antarctic Research Station Concordia. Microbial Ecology, 65(3), 638-651. https://doi.org/10.1007/s00248-013-0193-4

Segawa, T., Takeuchi, N., Rivera, A., Yamada, A., Yoshimura, Y., Barcaza, G., Shinbori, K., Motoyama, H., Kohshima, S., & Ushida, K. (2013). Distribution of antibiotic resistance genes in glacier environments: Antibiotic resistance genes in snow and ice. Environmental Microbiology Reports, 5(1), 127-134. https://doi.org/10.1111/1758-2229.12011

Silva, T. R., Duarte, A. W. F., Passarini, M. R. Z., Ruiz, A. L. T. G., Franco, C. H., Moraes, C. B., de Melo, I. S., Rodrigues, R. A., Fantinatti-Garboggini, F., & Oliveira, V. M. (2018). Bacteria from Antarctic environments: Diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biology, 41(7), 1505-1519. https:// doi.org/10.1007/s00300-018-2300-y

Tedesco, P., Maida, I., Esposito, F. P., Tortorella, E., Subko, K., Ezeofor, C. C., Zhang, Y., Tabudravu, J., Jaspars, M., Fani, R., & De Pascale, D. (2016). Antimicrobial activity of monoramnholipids produced by bacterial strains isolated from the Ross Sea (Antarctica). Marine Drugs, 14(5). https://doi.org/10.3390/md14050083

Teixeira, L. C. R. S., Peixoto, R. S., Cury, J. C., Sul, W. J., Pellizari, V. H., Tiedje, J., & Rosado, A. S. (2010). Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISME Journal, 4(8), 989-1001. https://doi.org/10.1038/ismej.2010.35

Tomova, I., Stoilova-Disheva, M., Lazarkevich, I., & Vasileva-Tonkova, E. (2015). Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Frontiers in Life Science, 8(4), 348-357. https://doi.org/10.1080/21553769.2015.1044130

Van Goethem, M. W., Pierneef, R., Bezuidt, O. K. I., Van De Peer, Y., Cowan, D. A., & Makhalanyane, T. P. (2018). A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome, 6(1), 40. https://doi. org/10.1186/s40168-018-0424-5

Weinstein, M. P. & Clinical and Laboratory Standards Institute. (2018). Performance standards for antimicrobial disk susceptibility tests.

Wong, C., Tam, H., Alias, S., González, M., González-Rocha, G., & Domínguez-Yévenes, M. (2011). Pseudomonas and Pedobacter isolates from King George Island inhibited the growth of foodborne pathogens. Polish Polar Research, 32(1), 3-14. https://doi.org/10.2478/v10183-011-0003-y

Yuan, K., Yu, K., Yang, R., Zhang, Q., Yang, Y., Chen, E., Lin, L., Luan, T., Chen, W., & Chen, B. (2019). Metagenomic characterization of antibiotic resistance genes in Antarctic soils. Ecotoxicology and Environmental Safety, 176, 300-308. https://doi.org/10.1016/j.ecoenv.2019.03.099

Zhou, L., Song, C., Li, Z., & Kuipers, O. P. (2021). Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genome-based analysis of their antimicrobial biosynthetic potential. BMC Genomics, 22(1), 29. https:// doi.org/10.1186/s12864-020-07346-8

Zhu, Y.-G., Zhao, Y., Zhu, D., Gillings, M., Penuelas, J., Ok, Y. S., Capon, A., & Banwart, S. (2019). Soil biota, antimicrobial resistance and planetary health. Environment International, 131, 105059. https://doi.org/10.1016/j. envint.2019.105059

Znój, A., Gawor, J., Gromadka, R., Chwedorzewska, K. J., & Grzesiak, J. (2021). Root-Associated Bacteria Community Characteristics of Antarctic Plants: Deschampsia antarctica and Colobanthus quitensis—a Comparison. Microbial Ecology. https://doi.org/10.1007/s00248-021-01891-9

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Nancy Cristina Calisto Ulloa, Laura Navarro, Paz Orellana, Guillermo Wiese, Claudio Gómez, Piedad Cortés-Cortés, Lorena Salazar, Ana Gutiérrez, Manuel Gidekel, Gino Corsini

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...