Morphometric variation in subantarctic populations of Liodessus chilensis (Coleoptera: Dytiscidae)
PDF

Keywords

Cape Horn Biosphere Reserve
diving beetles
Dytiscidae
geometric morphometrics
Liodessus

How to Cite

Rendoll-Cárcamo, J., Gañán, M., Riquelme del Río, B., Convey, P., & Contador, T. (2024). Morphometric variation in subantarctic populations of Liodessus chilensis (Coleoptera: Dytiscidae). Anales Del Instituto De La Patagonia, 52. https://doi.org/10.22352/AIP202452009

Abstract

In aquatic insects, body size and shape are key traits that may indicate phenotypic plasticity or adaptations to their hydrological landscape. Liodessus chilensis is a small and poorly-known aquatic beetle that inhabits permanent and temporary bodies of water. Accompanying the report of the species in different habitats of Navarino Island, an update of its description is presented. Additionally, body shape variation of different populations of L. chilensis is evaluated. Geometric morphometric analysis and multivariate regressions on the body shape of L. chilensis show variation mainly in the posterior part of the elytra and could indicate plasticity linked to the nature of the habitats in which they occur. The population of temporary pools presents shorter and broader elytra in their terminal part, while those that inhabit peat bogs and wetlands are longer and elongated. Additionally, a positive allometric effect was found, indicating that in addition to the differences in body shape, populations inhabiting temporary pools tend to be smaller in size. The plasticity of forms of L. chilensis as well as their permanent and temporary habitats can be considered as sentinels of environmental changes. These results are relevant for the Magallanes region, which has recently been declared prone to drought.

https://doi.org/10.22352/AIP202452009
PDF

References

Adams, D.C., Rohlf, F.J., & Slice, D.E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71(1), 5-16.

Adams, D.C., Rohlf, F.J., & Slice, D.E. (2013). A field comes of age: geometric morphometrics in the 21st century. Hystrix, 24, 7-14.

Arnqvist, G., & Mårtensson, T. (1998). Measurement error in geometric morphometrics: empirical strategies to assess and reduce its impact on measures of shape. Acta Zoologica Academiae Scientiarum Hungaricae, 44(1-2), 73-96.

Benítez, H.A., Briones, R., & Jerez, V. (2011). Intra and Inter-population morphological variation of shape and size of the Chilean magnificent beetle, Ceroglossus chilensis in the Baker River Basin, Chilean Patagonia. Journal of Insect Science, 11(1), 94.

Benítez, H.A., Püschel, T., Lemic, D., ?a?ija, M., Kozina, A., & Bažok, R. (2014). Ecomorphological variation of the wireworm cephalic capsule: Studying the interaction of environment and geometric shape. PLoS One, 9(7), e102059.

Benítez, H.A., Sukhodolskaya, R.A., Avtaeva, T.A., Escobar-Suárez, S., Órdenes-Clavería, R., Laroze, D., ... & Vavilov, D.N. (2023). Quantifying elevational effect on the geometric body shape of Russian beetle Carabus exaratus (Coleoptera: Carabidae). Zoologischer Anzeiger, 302, 30-36.

Benítez, H.A., Sanzana, M.J., Jerez, V., Parra, L.E., Hernández, C.E., & Canales-Aguirre, C.B. (2013). Sexual shape and size dimorphism in carabid beetles of the genus Ceroglossus: is geometric body size similar between sexes due to sex ratio? Zoological Science, 30(4), 289-295.

Bookstein, F.L. (1991). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press.

Chown, S.L., & Gaston, K.J. (2010). Body size variation in insects: a macroecological perspective. Biological Reviews, 85(1), 139-169.

Contador, T., Kennedy, J.H., Rozzi, R., & Villarroel, J.O. (2015). Sharp altitudinal gradients in Magellanic Sub-Antarctic streams: patterns along a fluvial system in the Cape Horn Biosphere Reserve (55 S). Polar Biology, 38, 1853-1866.

Edwards, D.D., & Moore, P.A. (2017). Body-shape variation of Acroneuria lycorias (Plecoptera? Perlidae) nymphs across magnitude and frequency stream flows. Freshwater Science, 36(3), 571-584.

Elgueta, M., & Arriagada, G. (1989). Estado actual del conocimiento de los coleópteros de Chile (Insecta: Coleoptera). Revista Chilena de Entomología, 17, 5-60.

Espinoza-Donoso, S., Angulo-Bedoya, M., Lemic, D., & Benítez, H.A. (2020). Assessing the influence of allometry on sexual and non-sexual traits: An example in Cicindelidia trifasciata (Coleoptera: Cicindelinae) using geometric morphometrics. Zoologischer Anzeiger, 287, 61-66.

Foster, H.R., & Keller, T.A. (2011). Flow in culverts as a potential mechanism of stream fragmentation for native and nonindigenous crayfish species. Journal of the North American Benthological Society, 30(4), 1129-1137.

Gocza?, J., Rossa, R., & Tofilski, A. (2018). Elytra reduction may affect the evolution of beetle hind wings. Zoomorphology, 137, 131-138.

Guignot, F. (1939). Contribution à l’étude des Bidessus. Bulletin de la Société d’Étude des Sciences Naturelles de Vaucluse, 1, 31-39.

Hopper, G.W., Morehouse, R.L., & Tobler, M. (2017). Body shape variation in two species of darters (Etheostoma, Percidae) and its relation to the environment. Ecology of Freshwater Fish, 26(1), 4-18.

Horne, C.R., Hirst, A.G., & Atkinson, D. (2015). Temperature?size responses match latitudinal?size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology Letters, 18(4), 327-335.

Jerez, V., & Moroni, J. (2006). Diversidad de coleópteros acuáticos en Chile. Gayana, 70(1), 72-81.

Juache, A., Órdenes, R., & Benítez, H.A. (2018). Quantifying the shape variation of the elytra in Patagonian populations of the ground beetle Ceroglossus chilensis (Coleoptera: Carabidae). Zoologischer Anzeiger, 274, 123-126.

Kadoi? Balaško, M., Bažok, R., Mikac, K.M., Benítez, H.A., Correa, M., & Lemic, D. (2022). Assessing the Population Structure of Colorado Potato Beetle Populations in Croatia Using Genetic and Geometric Morphometric Tools. Agronomy, 12(10), 2361.

Klingenberg, C.P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353-357.

Lancaster, J., & Downes, B.J. (2013). Aquatic entomology. OUP Oxford.

Larson, D.J., Alarie, Y., & Roughley, R.E. (2000). Predaceous diving beetles (Coleoptera: Dytiscidae) of the Nearctic Region, with emphasis on the fauna of Canada and Alaska. National Research Council of Canada Research Press.

Libonatti, M.L., Michat, M.C., & Torres, P.M.L. (2011). Key to the subfamilies, tribes and genera of adult Dytiscidae of Argentina (Coleoptera: Adephaga). Revista de la Sociedad Entomológica Argentina, 70(3-4), 317-336.

Linz, D.M., Hu, A.W., Sitvarin, M.I., & Tomoyasu, Y. (2016). Functional value of elytra under various stresses in the red flour beetle, Tribolium castaneum. Scientific Reports, 6, 34813.

Mekonnen, Z.A., Riley, W.J., Berner, L.T., Bouskill, N.J., Torn, M.S., Iwahana, G., … & Grant, R. (2021). Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environmental Research Letters, 16(5), 053001.

Miller, K.B. (1998). Revision of the Nearctic species in the Liodessus affinis (Say 1823) species complex (Coleoptera: Dytiscidae: Hydroporinae: Bidessini). Entomologica Scandinavica, 29, 281–314.

Miller, K.B., & Bergsten, J. (2016). Diving beetles of the world, systematics and biology of the Dytiscidae. Johns Hopkins University Press.

Moroni, J. (1973). Elenco sistemático, sinonímico y distribución de coleópteros acuáticos chilenos. Revista Chilena de Entomología, 7, 193-206.

Nilsson, A.N., & Fery, H. (2006). World catalogue of Dytiscidae - Corrections and additions. 3 (Coleoptera: Dytiscidae). Koleopterologische Rundschau, 76, 55-74.

Oldmeadow, D.F., Lancaster, J., & Rice, S.P. (2010). Drift and settlement of stream insects in a complex hydraulic environment. Freshwater Biology, 55(5), 1020-1035.

Pisano, E. (1977). Fitogeografía de Fuego-Patagonia. Anales del Instituto de la Patagonia Chilena Serie Ciencias Naturales, 8, 121-250.

RStudio Team. (2023). RStudio (Version 2023.12.1) [Computer software]. RStudio.

Rendoll-Cárcamo, J., Contador, T., Gañán, M., Troncoso, C.P., Márquez, A.M., Convey, P., ... & Rozzi, R. (2019). Altitudinal gradients in Magellanic sub-Antarctic lagoons: the effect of elevation on freshwater macroinvertebrate diversity and distribution. PeerJ, 7, e7128.

Rendoll-Cárcamo, J., Gañán, M., Madriz, R.I., Convey, P., & Contador, T. (2023). Wing reduction and body size variation along a steep elevation gradient: a case study with Magellanic sub-Antarctic mayflies and stoneflies. Frontiers in Ecology and Evolution, 11, 1188889.

Rohlf, F.J. (2013). TPSdig, v. 2.17. State University at Stony Brook.

Rohlf, F.J. (2018). TpsUtil (Version 1.76). Department of Ecology and Evolution and Anthropology, State University of New York at Stony Brook.

Rohlf, F.J., & Marcus, L.F. (1993). A revolution morphometrics. Trends in Ecology & Evolution, 8(4), 129-132.

Rohlf, F.J., & Slice, D. (1990). Extensions of the Procrustes methods for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40–59.

Solier, A. (1849). Orden III. Coleópteros. En Gay, Historia Física y Política de Chile. Zool. 4 (pp. 105-511).

Sukhodolskaya, R.A., Avtaeva, T.A., Gordienko, T.A., Vodounon, N.R., & Kushalieva, S.A. (2020). Body Size Variation in Ground Beetle Carabus Exaratus Quensel, 1806 (Coleoptera, Carabidae) in Altitude Gradient. Diversidad biológica del Cáucaso y el sur de Rusia: niveles, enfoques, estado del conocimiento, 178-186.

Zimmermann, A. (1923). Neue Schwimmkäfer. Entomologische Blätter, 19(1), 31-40.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Javier Rendoll-Cárcamo, Melisa Gañán, Brenda Riquelme del Río, Peter Convey, Tamara Contador

Downloads

Download data is not yet available.