Abstract
Biomass is a key parameter in ecology, as it provides insight into ecosystem functioning. Length-mass estimations are widely used for this purpose due to the relatively simple and straightforward procedures required. In this study, we conducted the first assessment of length-mass relationships for 25 aquatic insect species from the Magellanic sub-Antarctic ecoregion of Chile. There were strong linear correlations between the mass and size of the study species. We found a low proportion of change in mass associated with length increase, for most species, given the obtained b values, which could indicate recent molts, incomplete chitinization, and/or dominance of early developmental stages. While the estimated parameters from linear and non-linear regressions were similar to those reported in other studies, we emphasize that simple extrapolation from other areas should be avoided due to the inherent variability of each ecosystem. The collection of length-mass estimation data provides important information on biomass and secondary production, key parameters of functional diversity.
References
Albariño, R. J., & Balseiro, E. G. (1998). Larval size and leaf conditioning in the breakdown of Nothofagus pumilio leaves by Klapopteryx kuscheli (Insecta, Plecoptera) in a South Andean stream. International Review of Hydrobiology, 83: 397-404.
Benke, A. C., Huryn, A. D., Smock, L. A., & Wallace, J. B. (1999). Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society, 18(3): 308-343.
Contador, T. & Kennedy, J. (2016). The life histories of Meridialaris chiloeensis (Demoulin, 1955) (Ephemeroptera: Leptophlebiidae) and Gigantodax rufescens (Edwards, 1931) (Diptera: Simuliidae) on a Magellanic sub-Antarctic island (55° S). Aquatic Insects, 37(2): 1-14.
Contador, T., Kennedy, J. H., Rozzi, R. & Ojeda, J. (2015). Sharp altitudinal gradients in Magellanic sub-Antarctic streams: patterns along a fluvial system in the Cape Horn Biosphere Reserve (55° S). Polar Biology, 38(11): 1853-1866. Domínguez, E. & Fernández, H. R. (2009). Macroinvertebrados bentónicos sudamericanos. Sistemática y Biología.
Fundación Miguel Lillo, Tucumán, Argentina.
Fenoglio, S., Tierno de Figueroa, J. M., Doretto, A., Falasco, E., & Bona, F. (2020). Aquatic insects and benthic diatoms: a history of biotic relationships in freshwater ecosystems. Water, 12(10): 2934.
Flint, O. S., Holzenthal, R. W. & Harris, S. C. (1999). Nomenclatural and systematic changes in the Neotropical caddisflies (Insecta: Trichoptera). Insecta Mundi, 13: 73-84.
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: a third universal response to warming?. Trends in Ecology & Evolution, 26(6): 285-291.
Harvey, J. A., Tougeron, K., Gols, R., Heinen, R., Abarca, M., Abram, P. K., ... & Chown, S. L. (2023). Scientists’ warning on climate change and insects. Ecological Monographs, 93(1), e1553.
Hódar, J. A. (1996). The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecologica, 17(5): 421-433.
Hof, C., Levinsky, I., Araujo, M. B., & Rahbek, C. (2011). Rethinking species’ ability to cope with rapid climate change.
Global Change Biology, 17(9): 2987-2990.
Horne, C. R., Hirst, A. G., & Atkinson, D. (2015). Temperature?size responses match latitudinal?size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology Letters, 18(4): 327-335.
Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A., & Holt, R. D. (2005). Trophic cascades across ecosystems. Nature, 437(7060): 880-883.
Marquina, D., Buczek, M., Ronquist, F., & ?ukasik, P. (2021). The effect of ethanol concentration on the morphological and molecular preservation of insects for biodiversity studies. PeerJ, 9, e10799.
McKinney, R. A., Glatt, S. M., & Williams, S. R. (2004). Allometric length?weight relationships for benthic prey of aquatic wildlife in coastal marine habitats. Wildlife Biology, 10(4): 241-249.
McLellan, I. D. & Swick, P. (2007) New species and keys to South American Gripopterygidae (Plecoptera). Illiesia, 3(4): 20-42.
Miserendino, M. L. (2001). Length-mass relationships for macroinvertebrates in freshwater environments of Patagonia (Argentina). Ecología Austral, 11(1): 3-8.
Miyasaka, H., Genkai-Kato, M., Miyake, Y., Kishi, D., Katano, I., Doi, H., Hona, S., & Kuhara, N. (2008). Relationships between length and weight of freshwater macroinvertebrates in Japan. Limnology, 9: 75-80.
R Studio. (2022). R Studio: Integrated Development Environment for R (Version 1.4.1717) [Computer software]. https:// www.rstudio.com/
Rendoll-Cárcamo, J., Contador, T., Gañán, M., Troncoso, C. P., Márquez, A. M., Convey, P., Kennedy, J. & Rozzi, R. (2019). Altitudinal gradients in Magellanic sub-Antarctic lagoons: the effect of elevation on freshwater macroinvertebrate diversity and distribution. PeerJ, 7, e7128.
Rendoll-Cárcamo, J., Gañán, M., Madriz, R.I., Convey, P. & Contador, T. (2023). Wing
reduction and body size variation along a steep elevation gradient: a case study with Magellanic sub-Antarctic mayflies and stoneflies. Frontiers in Ecolology and Evolution, 11:1188889.
Rosenfeld, S., Convey, P., Contador, T., Rendoll-Cárcamo, J., Poulin, E., Maturana, C., Frugone, M. J., & Mackenzie, R. (2020). Capítulo VII Magallanes, laboratorio del cambio global. En: Magallanes: tres descubrimientos. Aldunate, C., R. Rozzi, F. Morello & F. Massardo (eds.). Colección Santander, Museo de Chileno de Arte Precolombino, Santiago, Chile. (263 pp.)Rozzi, R., Crego, R. D., Contador, T., Schüttler, E., Rosenfeld, S., Mackenzie, R., ... & Massardo,
F. (2020). Un centinela para el monitoreo del cambio climático y su impacto sobre la biodiversidad en la cumbre austral de América: La nueva red de estudios a largo Plazo Cabo de Hornos. Anales del Instituto de la Patagonia, 48 (3): 45-81.
Smock, L. A. (1980). Relationships between body size and biomass of aquatic insects. Freshwater Biology, 10(4): 375-383. Santini, L., Benítez?López, A., Ficetola, G. F., & Huijbregts, M. A. (2018). Length–mass allometries in amphibians.
Integrative zoology, 13(1): 36-45.
Stoffels, R. J., Karbe, S., & Paterson, R. A. (2003). Length?mass models for some common New Zealand littoral?benthic macroinvertebrates, with a note on within?taxon variability in parameter values among published models. New Zealand Journal of Marine and Freshwater Research, 37(2): 449-460.
Sweeney, B. W., Funk, D. H., Camp, A. A., Buchwalter, D. B., & Jackson, J. K. (2018). Why adult mayflies of Cloeon dipterum
(Ephemeroptera: Baetidae) become smaller as temperature warms. Freshwater Science, 37(1): 64-81.
Urias, H. Q., & Salvador, B. R. P. (2014). Estadística para ingeniería y ciencias. Grupo Editorial Patria.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D. A., François, R., ... & Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43): 1686.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2024 Javier Rendoll-Cárcamo, Melisa Gañán, Peter Convey, Tamara Contador