Stability and complexity-stability relationship is different in empirical food webs according to the type of ecosystem
PDF (Español (España))


prey-predator interactions
Quasi-Sign Stability
freshwater ecosystem
marine ecosystem
terrestrial ecosystem

How to Cite

Marina, T. I., & Colbrunn, N. (2023). Stability and complexity-stability relationship is different in empirical food webs according to the type of ecosystem. Anales Del Instituto De La Patagonia, 51.


Food webs describe the predator-prey interactions that occur in a given habitat. They are useful tools for analyzing complexity and stability, as well as the relationship between these properties, in natural ecosystems. In this work we studied stability, measured as connectance ($C=L/S^2$, where S is the number of species and L the number of interactions), and the complexity-stability relationship in more than 300 empirical food webs considering a wide range of complexity and a variety of ecosystems. For this we considered two indicators of stability, modularity and the 'Quasi-Sign Stability' index, which we evaluated generally, and particularly for freshwater, marine and terrestrial ecosystems. Our results show significant differences in the stability indicators analyzed according to the type of ecosystem. In addition, the complexity-stability relationship was different not only according to the stability indicator considered, but also the type of ecosystem. In this sense, we suggest that it is essential to consider the multidimensionality of stability when evaluating it specifically and in the context of the complexity-stability relationship in food webs, as well as the type of ecosystem.
PDF (Español (España))


Allesina, S., & Pascual, M. (2008). Network structure, predatorprey modules, and stability in large food webs. Theoretical Ecology, 1(1), 55–64.

Allesina, S., & Tang, S. (2015). The stabilitycomplexity relationship at age 40: A random matrix perspective. Population Ecology, 57(1), 63–75.

Blanchette, M. L., Davis, A. M., Jardine, T. D., & Pearson, R. G. (2014). Omnivory and opportunism characterize food webs in a large dry-tropics river system. Freshwater Science, 33(1), 142–158.

Briand, F., & Cohen, J. (1987). Environmental Correlates of Food Chain Length | Science.

Brose, U., Archambault, P., Barnes, A. D., Bersier, L.-F., Boy, T., Canning-Clode, J., Conti, E., Dias, M., Digel, C., Dissanayake, A., Flores, A. A. V., Fussmann, K., Gauzens, B., Gray, C., Häussler, J., Hirt, M. R., Jacob, U., Jochum, M., Kéfi, S., … Iles, A. C. (2019). Predator traits determine food-web architecture across ecosystems. Nature Ecology & Evolution, 3(6), 919–927.

Brose, U., & et. al. (2018). GlobAL daTabasE of traits and food Web Architecture (GATEWAy) v.1.0. iDiv Data Repository.

Cebrian, J. (2004). Role of first-order consumers in ecosystem carbon flow. Ecology Letters, 7(3), 232–240.

Cebrian, J., & Lartigue, J. (2004). Patterns of Herbivory and Decomposition in Aquatic and Terrestrial Ecosystems. Ecological Monographs, 74(2), 237–259.

Cohen, J. E., & Stephens, D. W. (1978). Food Webs and Niche Space. Princeton University Press.

Csardi, & Nepusz. (2006). The igraph software package for complex network research.

Digel, C., Curtsdotter, A., Riede, J., Klarner, B., & Brose, U. (2014). Unravelling the complex structure of forest soil food webs: Higher omnivory and more trophic levels. Oikos, 123(10), 1157–1172.

Dodge, Y. (2008). Kruskal-wallis test. In The concise encyclopedia of statistics (pp. 288–290). Springer New York.

Domínguez-García, V., Dakos, V., & Kéfi, S. (2019). Unveiling dimensions of stability in complex ecological networks. Proceedings of the National Academy of Sciences, 116(51), 25714–25720.

Donohue, I., Hillebrand, H., Montoya, J. M., Petchey, O. L., Pimm, S. L., Fowler, M. S., Healy, K., Jackson, A. L., Lurgi, M., McClean, D., O’Connor, N. E., O’Gorman, E. J., & Yang, Q. (2016). Navigating the complexity of ecological stability. Ecology Letters, 19(9), 1172–1185.

Dunne, J. A., & Williams, R. J. (2009). Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1524), 1711–1723.

Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002). Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences, 99(20), 12917–12922.

Frelat, R., Kortsch, S., Kröncke, I., Neumann, H., Nordström, M. C., Olivier, P. E. N., & Sell, A. F. (2022). Food web structure and community composition: A comparison across space and time in the North Sea. Ecography, 2022(2).

Gilbert, A. J. (2009). Connectance indicates the robustness of food webs when subjected to species loss. Ecological Indicators, 9(1), 72–80.

Grilli, J., Rogers, T., & Allesina, S. (2016). Modularity and stability in ecological communities. Nature Communications, 7(1), 12031.

Guimerà, R., & Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic networks. Nature, 433(7028), 895–900.

Jacquet, C., Moritz, C., Morissette, L., Legagneux, P., Massol, F., Archambault, P., & Gravel, D. (2016). No complexitystability relationship in empirical ecosystems. Nature Communications, 7(1), 12573.

Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V., & Aschan, M. (2015). Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proceedings of the Royal Society B: Biological Sciences, 282(1814), 20151546.

Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E., & Taylor, W. W. (2003). Compartments revealed in food-web structure. Nature, 426(6964), 282–285.

Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C., & Dieckmann, U. (2018). Complexity and stability of ecological networks: A review of the theory. Population Ecology, 60(4), 319–345.

Lenth, R. V. (2022). Emmeans: Estimated Marginal Means, aka Least-Squares Means.

Marina, T. I., Saravia, L. A., Cordone, G., Salinas, V., Doyle, S. R., & Momo, F. R. (2018). Architecture of marine food webs: To be or not be a “small-world.” PLOS ONE, 13(5), e0198217.

Martinez, N. D. (1992). Constant Connectance in Community Food Webs. The American Naturalist, 139(6), 1208–1218.

May, R. (1973). Stability and complexity in model ecosystems. Princeton University Press.

McCann, K. S. (2000). The diversitystability debate. Nature, 405(6783), 228–233.

Montoya, J. M., Rodríguez, M. A., & Hawkins, B. A. (2003). Food web complexity and higher-level ecosystem services. Ecology Letters, 6(7), 587–593.

Mougi, A. (2022). Predator interference and complexitystability in food webs. Scientific Reports, 12(1), 2464.

Naeem, S., & Li, S. (1997). Biodiversity enhances ecosystem reliability. Nature, 390(6659), 507–509.

Namba, T. (2015). Multi-faceted approaches toward unravelling complex ecological networks. Population Ecology, 57(1), 3–19.

Nowlin, W. H., Vanni, M. J., & Yang, L. H. (2008). Comparing Resource Pulses in Aquatic and Terrestrial Ecosystems. Ecology, 89(3), 647–659.

Pace, M. L., Cole, J. J., Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Van de Bogert, M. C., Bade, D. L., Kritzberg, E. S., & Bastviken, D. (2004). Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature, 427(6971), 240–243.

Paine, R. T. (1966). Food Web Complexity and Species Diversity. The American Naturalist, 100(910), 65–75.

Pascual, M., & Dunne, J. A. (2005). Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press.

Perkins, D. M., Hatton, I. A., Gauzens, B., Barnes, A. D., Ott, D., Rosenbaum, B., Vinagre, C., & Brose, U. (2022). Consistent predator-prey biomass scaling in complex food webs. Nature Communications, 13(1), 4990.

Rodriguez, I. D., Marina, T. I., Schloss, I. R., & Saravia, L. A. (2022). Marine food webs are more complex but less stable in sub-Antarctic (Beagle Channel, Argentina) than in Antarctic (Potter Cove, Antarctic Peninsula) regions. Marine Environmental Research, 174, 105561.

Rodríguez-Flórez, C. N., Paczkowska, J., Martín, J., Gil, M. N., Flores-Melo, X., & Malits, A. (2023). Terrigenous dissolved organic matter input and nutrient-light-limited conditions on the winter microbial food web of the Beagle Channel. Journal of Marine Systems, 103860.

Saravia, L. A. (2022). Multiweb: Ecological network analyses including multiplex networks.

Shurin, J. B., Gruner, D. S., & Hillebrand, H. (2005). All wet or dried up? Real differences between aquatic and terrestrial food webs. Proceedings of the Royal Society B: Biological Sciences, 273(1582), 1–9.

Stouffer, D. B., & Bascompte, J. (2011). Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences, 108(9), 3648–3652.

Team, R. C. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

Thompson, R. M., Dunne, J. A., & Woodward, G. (2012). Freshwater food webs: Towards a more fundamental understanding of biodiversity and community dynamics. Freshwater Biology, 57(7), 1329–1341.

Thompson, R. M., Hemberg, M., Starzomski, B. M., & Shurin, J. B. (2007). Trophic Levels and Trophic Tangles: The Prevalence of Omnivory in Real Food Webs. Ecology, 88(3), 612–617.

Wickham, H., François, R., Henry, L., & Müller, K. (2022). Dplyr: A Grammar of Data Manipulation.

Wilkinson, G. N., & Rogers, C. E. (1973). Symbolic Description of Factorial Models for Analysis of Variance. Journal of the Royal Statistical Society. Series C (Applied Statistics), 22(3), 392–399.

Windsor, F. M., van den Hoogen, J., Crowther, T. W., & Evans, D. M. (2023). Using ecological networks to answer questions in global biogeography and ecology. Journal of Biogeography, 50(1), 57–69.

Yodzis, P., & Innes, S. (1992). Body Size and Consumer-Resource Dynamics. The American Naturalist, 139(6), 1151–1175.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Tomás Ignacio Marina, Nathan Colbrunn


Download data is not yet available.


Metrics Loading ...