Composition, structure and diversity of dwarf shrublands of Empetrum rubrum in the continental and insular Magellanic steppe of Chile
PDF (Español (España))


floristic diversity
soil chemistry
Tierra del Fuego
murtillares or dwarf shrubs

How to Cite

Domínguez, E. (2023). Composition, structure and diversity of dwarf shrublands of Empetrum rubrum in the continental and insular Magellanic steppe of Chile. Anales Del Instituto De La Patagonia, 51.


The dwarf shrublands of Empetrum rubrum in the Magellanic steppe are unique habitats due to their growth in acidic and nutrient-poor soils. The objective of this study was to describe the vegetation and environmental variables that characterize this type of environment. Significant differences were found between continental dwarf shrubs and those located northeast of Tierra del Fuego Island in terms of species richness and diversity. Despite apparent erosion, the proportion of native species was higher than that of introduced species. The dominant growth habit in terms of coverage were the dwarf dwarf shrublands of E. rubrum on the continent and those of Baccharis magellanica on Tierra del Fuego Island. Seven lichens were also found in the dwarf shrubs. The dominant life form were hemicryptophytes or perennial herbs, indicating that these shrublands are not under severe anthropogenic pressure, but do have high levels of erosion, which are likely the result of past overgrazing. The physical and chemical soil properties analyzed, which showed significant differences between the dwarf shrubs, were N-NO3, Mg, K, Na, CICE, and silt. On the other hand, Canonical Correspondence Analysis (CCA) revealed an important soil gradient, where pH and organic matter, along with the content of macronutrients (N, P, K), determine differences between the dwarf shrubs. Finally, it is recommended to pay more attention to the management and conservation of these shrublands, considering that they may be affected by anthropogenic management such as grazing, mining interventions, and water deficit, as has occurred in the northern hemisphere where they have left the soil bare
PDF (Español (España))


Ali, S., Zeb, U., Lei, W., Khan, H., Shehzad, K., Khan, H., et al. (2018). Floristic inventory and ecological characterization the village Sherpao, District Charsadda, Khyber Pakhtunkhwa-Pakistan. Acta Ecol. Sin., 38: 329–333. doi: 10.1016/j.chnaes.2017.12.004

Bakker, J. P., Schrama, M., Esselink, P., Daniels, P., Bhola, N., Nolte, S., Vries, de, Y., Veeneklaas, R., & Stock, M. (2020). Long-term effects of sheep grazing in various densities on marsh properties and vegetation dynamics in two different salt-marsh zones. Estuaries and coasts, 43(2): 298-315.

Bano, S., Khan, S. M., Alam, J., Alqarawi, A. A., Abd_Allah, E. F., et al. (2018). Eco-floristic studies of native plants of the Beer Hills along the Indus River in the districts Haripur and Abbottabad, Pakistan. Saudi J. Biol. Sci., 25: 801–810. doi: 10.1016/j.sjbs.2017.02.009

Blanco, J.A. (2007). The representation of allelopathy in ecosystem-level forest models. Ecological Modelling, 209:65–77.

Borrelli, P. & Oliva, G. (2001). Efecto de los animales sobre los pastizales, in: Borrelli, P., Oliva, G. (Eds.), Ganadería ovina sustentable en la Patagonia Austral. Estación Experimental Agropecuaria de Santa Cruz. Instituto Nacional de Tecnología Agropecuaria (INTA). Buenos Aires, Argentina. pp. 99-128.

Braun-Blanquet, J. (1979). Fitosociología. Bases para el estudio de las comunidades vegetales. Madrid: Blume Ediciones.

Caso, C & M.A. Gil 1988. The gini-simpson index of diversity: estimation in the stratified sampling. Communications in Statistics - Theory and Methods, 17: 2981-2995.

Cingolani, A. M. (1999). Efectos de cien años de pastoreo ovino sobre la vegetación y los suelos de la isla de Tierra del Fuego. Tesis de doctorado en Ciencias Biológicas. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

Clarke, K.R. (1993). Non-parametric multivariate analyses of change in community structure. Australian Journal of Ecology, 18: 117-143.

Clarke, K.R. & Green, R.H. (1988). Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series, 46: 213-226.

Collantes, M.B., Anchorena, J. & Koremblit, G. (1989). A soil nutrient gradient in Magellanic Empetrum heathlands. Vegetatio, 80(2):183-193.

Collantes, M., Anchorena, J., Cingolani, A., 1999. The steppes of Tierra del Fuego: floristic and growth form patterns controlled by soil fertility and moisture. Plant Ecology, 140:61-75. doi: 10.1111/j.1365-2664.2004.00978.x

Concostrina-Zubiri, L., Arenas, J.M., Martínez, I., Escudero, A. (2019). Unassisted establishment of biological soil crusts on dryland road slopes. Ecology, 19:39–51.

Correa, M. N. (1969, 1971, 1978, 1984, 1985, 1988, 1999). Flora Patagónica I-VIII. Colección Científica INTA. Buenos Aires.

Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., & Robledo, C. (2011). InfoStat versión 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http: // www. infostat. com. Arkansas

Domínguez, E. & Pauchard, A. (2012). Ten Years of Exclusion from Grazing Increase Native Plant Diversity in the Austral Patagonian Steppe. pages 59-81. En: Grazing Ecology: Vegetation and Soil Impact. Arévalo J. 2012. Nova Science Publishers Inc.

Domínguez, E. & Santis, P. (2021). Plantas naturalizadas e introducidas de la región de Magallanes, asociadas a la actividad silvoagropecuaria y áreas protegidas: atributos de vida, distribución y estatus de invasión. Chloris Chilensis. Año 24(2): 21-47. URL:

Domínguez, E. & Silva, F. (2021). Taraxacum gilliesii Hook. & Arn. (Asteraceae), nuevo registro para su área de distribución en Chile. Anales Instituto Patagonia (Chile), 49(7):1-3.

Ellenberg, H, & Leuschner, C. (2010). Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer sicht, 6. völlig neu bearbeitete und stark erweiterte Auflage. Eugen Ulmer, Stuttgart

Floraweb (2013) Empetrum nigrum L. . Consultado el 20 de enero de 2020

García Criado M, Meyers-Smith IH, Bjorkman AD, Lehmann CER, Stevens N (2019) Woody plant encroachment intensifes under climate change across tundra and savanna biomes. Glob Ecol Biogeogr 29:925–943.

Gholamhosseinian A, Sepehr A, Emadodin I. (2020). The effects of biocrusts on soil parameters in a semi-arid pediment at north-eastern Iran. Rev Geomorfol, 22(1):5-19.

Green, A.J., Lovas-Kiss, Á., Stroud, R.A., Tierney, N. & Fox, A. D. (2018). Plant dispersal by Canada geese in Arctic Greenland, Polar Research, 37:1,1508268, DOI: 10.1080/17518369.2018.1508268

Gul, B., Ahmad, I., Khan, H., Zeb, U., and Ullah, H. (2018). Floristic inventory of wild plants of Peshawar university campus. Acta Ecol. Sin., 38: 375–380. doi: 10.1016/j.chnaes.2018.04.005

Ha, J., Kang, H., Lim, J., Kim, M., Kim, J., Jeong, D., Lee, D., Lee, H., Kim, S. y Kim, S. (2020). Impacts of oil pipeline installation on plant diversity and soil characteristics in Korea. Ecological Engineering, 156: 24-29.

Hammer, Ø., Harper, D., & Ryan, P. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1):1-9.

Hein, N., Merkelbach, J., Zech, K. et al. (2021). Drought sensitivity of Empetrum nigrum shrub growth at the species’ southern lowland distribution range margin. Plant Ecol., 222: 305–321.

INIA (1982). Plan de Estudio Desarrollo Tecnológico Agropecuario XII Región. Vol VI Unidad de Trabajo N°3. Distritos Agroclimáticos. Secretaría de Planificación y Coordinación Regional de Magallanes y Antártica Chilena.

IPCC (2022). Cambio Climático 2022: Impactos, Adaptación y Vulnerabilidad. Contribución del Grupo de Trabajo II al Sexto Informe de Evaluación del Panel Intergubernamental sobre Cambio Climático [H.-O. Pörtner, DC Roberts, M. Tignor, ES Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Prensa de la Universidad de Cambridge. Cambridge University Press, Cambridge, Reino Unido y Nueva York, NY, EE. UU., 3056 págs., doi:10.1017/9781009325844.

Isermann M (2005) pH del suelo y diversidad de especies en dunas costeras. Ecología vegetal, 178:111–120.

Jost, L. (2018). What do we mean by diversity? The path towards quantification. Mètode Science Studies Journal, 9: 55-61.

Lonsdale, W.M. (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536.

Lorion, J. & Small, E. (2021). Crowberry (Empetrum): A Chief Arctic Traditional Indigenous Fruit in Need of Economic and Ecological Management, 87:259–310.

Luebert, F. & Pliscoff, P. (2017). vegetacionales-luebert-pliscoff-2017

Meier, C.L. & Bowman, W.D. (2008). Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences, 105(52): 19780-19785.

Mendoza, R.E., Collantes, M.B., Anchorena, J., Cainzos, S. (1995). Effects of liming and fertilization on forage yield and vegetation in dry heath soils from southern Patagonia. Journal of Plant Nutrition, 18: 401-420.

Mendoza, R., Cabello, M., Anchorena, J., García, I., Marbán, L. (2011). Soil parameters and host plants associated with arbuscular mycorrhizas in the grazed Magellanic steppe of Tierra del Fuego. Agriculture, Ecosystem and Environment, 140: 411–418. doi: 10.1016/j.agee.2011.01.004

Milchunas, D. G. & Lauenroth, W.K. (1993). Quantitative Effects of Grazing on Vegetation and Soils Over a Global Source. Ecological Monographs, 63(4):328-366.

Muiño, W.A., & Prina, A.O. (2006). Taraxacum gilliesii Hook. & Arn. (Asteraceae), nuevo registro para su área de distribución en Argentina. Revista Facultad Agronomía – UNLPam, 7(2), 51-53.

Peri, P.L., Ladd, B., Martinez Pastur, G., Diaz, S. (2008). Carbon sequestration and nutrient accumulation in a Patagonian shrubland under grazing and exclusion regimes. Journal of Arid Environments, 72(8), 1480-1491.

Pisano, E. (1977). Fitogeografía de Fuego-Patagonia Chilena. I. Comunidades vegetales entre las latitudes 52º S y 56º S. Anales del Instituto de la Patagonia, Punta Arenas Chile 8: 121-250.

Posse, G., J. Anchorena & Collantes, M.B. (1996). Seasonal diets of sheep in the steppe region of Tierra del Fuego, Argentina. Jounal Range Management 49 (1):24-30.

Posse, G. (1997). Interacción a nivel de comunidad entre la heterogeneidad de la vegetación y el pastoreo ovino en la Estepa Magallánica. Ph.D. Thesis. Buenos Aires University, Buenos Aires, Argentina.

Posse, G. & Mendoza, R.E. (1995). Curvas de respuesta de rendimiento de Dactylis glomerata L. a la adición de fósforo, nitrógeno, potasio y cal en un suelo de brezo xérico de Tierra del Fuego, Communications in Soil Science and Plant Analysis, 26:3- 4, 631-642, DOI: 10.1080/00103629509369323

Radic-Schilling S, Corti P, Muñoz-Arriagada R, Butorovic N, Sánchez-Jardón L. (2021). Ecosistemas de estepa en laPatagonia chilena: Distribución, clima, biodiversidad y amenazas para su manejo sostenible. En: Castilla CC, ArmestoJJ, Martínez-Harms MJ (Eds) Conservación en la Patagonia chilena: Evaluación del conocimiento, oportunidades ydesafíos. Ediciones Universidad Católica, Santiago, pp 223-255.

Raunkiaer, C. (1934). The Life Forms of Plants and Statistical Plant Geography; Being the collected Papers of C. Raunkiaer.

Rodríguez, R., & Marticorena, A. (Eds.). (2019). Catálogo de las plantas vasculares de Chile. Universidad de Concepción.

Sala, O. E., Chapin, F. S. III, Armesto, J. J., Berlow, E., Bloomfield, J., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287: 1770–1774. doi: 10.1126/science.287.5459.1770

Santibáñez, F; Santibáñez P; Caroca, C. y González, P. (2017). Atlas agroclimático de Chile. Estado actual y tendencias del clima. Tomo VI: Regiones de Aysén y Magallanes.

Stevens, N., Bond, W., Feurdean, A. & Lehmann, C.E. (2022). Grassy Ecosystems in theAnthropocene, Annual Review of Environment Resources, 47:261–89.

ter Braak, C.J.F. (1995) Ordination. In: Jongman, R.H.G., ter Braak, C.J.F. and van Tongeren, O.F.R., Eds., Data Analysis in Community and Landscape Ecology, Cambridge University Press, Cambridge, 91-173.

Tybirk, K., Nilsson, M.C., Michelsen, A., Kristensen, H.L., Shevtsova, A., Tune Strandberg, M., Johansson, M., Nielsen, K.E., Riis-Nielsen, T., Strandberg, B., Johnsen, I (2000). Ecosistemas dominados por Nordic Empetrum: función y susceptibilidad a los cambios ambientales. Ambio, 29:90–97

Valle, S., Radic, S. & Casanova, M. (2015). Suelos asociados a tres comunidades vegetales de pastoreo importantes en Patagonia sur. Revista Agro Sur, 43(2):89-99.

van der Maarel, E. (2007). Transformation of cover-abundance values for appropriate numerical treatment Alternatives to the proposals by Podani. Journal of Vegetation Science, 18(5): 767-770.

Vilà, M., Pino, J., Montero, A. & Font, X. (2010). Are island plant communities more invaded than their mainland counterparts? J Veg Sci 21:438–446.

Wardle, D.A., Nilsson, M.C., Gallet, C. & Zackrisson, O. (1998). An ecosystem-level perspective of allelopathy. Biological Reviews of the Cambridge Philosophical Society, 73: 305–319.

Wilson, M.C., Chen, X.Y., Corlett, R.T., Didham, R.K., Ding, P., Holt, R.D., et al. (2016). Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc. Ecol., 31: 219–227. doi: 10.1007/s10980-015-0312-3

Zackrisson, O. and Nilsson, M.-C. (1992). Allelopathic effects by Empetrum hermaphroditum on seed germination of two boreal tree species. Can. J. Forest Res., 22:1210–1319.

Zuloaga, F., Morrone, O., & Belgrano, M. (2020). Catálogo de las Plantas Vasculares del Cono Sur. Versión base de datos en sitio web del Instituto Darwinion, Argentina. URL: http:// marzo 20, 2023.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Erwin Domínguez


Download data is not yet available.


Metrics Loading ...