Resistencia a antibióticos y actividad antimicrobiana de aislados bacterianos de suelo antártico
PDF

Palabras clave

antimicrobianos
multirrresistencia a antibióticos
islas Shetland del Sur

Cómo citar

Calisto Ulloa, N. C., Navarro, L. ., Orellana, P., Wiese, G., Gómez, C., Cortés-Cortés, P., Salazar, L., Gutiérrez, A., Gidekel, M., & Corsini, G. (2022). Resistencia a antibióticos y actividad antimicrobiana de aislados bacterianos de suelo antártico. Anales Del Instituto De La Patagonia -- ISSN 0718-686X, 49. https://doi.org/10.22352/AIP202149018

Resumen

En este estudio 50 aislados bacterianos obtenidos de muestras de suelo antártico prístino, de las islas Rey George y Greenwich (Islas Shetland del Sur), y 25 aislados bacterianos de la rizósfera de Deschampsia antarctica Desv, se emplearon para determinar su capacidad antimicrobiana y su respuesta a 21 antibióticos. La susceptibilidad a los antibióticos se evaluó siguiendo el método de difusión en disco utilizando diferentes grupos de antibióticos: penicilinas, cefalosporinas, carbapenémicos, aminoglicósidos, quinolonas, tetraciclina, fenicoles, macrólidos, sulfonamidas y trimetoprim. La producción de compuestos antimicrobianos por los aislados bacterianos antárticos se determinó mediante el método de difusión en agar, utilizando como indicadores un panel de bacterias patógenas humanas Gram positivo y Gram negativo.

Los aislados bacterianos estudiados mostraron resistencia a 14 (67%) de los 21 antibióticos probados. Tres aislados bacterianos (4%) fueron resistentes a al menos un antibiótico y 47 (63%) fueron multirresistentes. Además, 26 aislados bacterianos (35%) no muestran actividad antimicrobiana y fueron susceptibles a todos los antibióticos estudiados. Finalmente, 27 aislados bacterianos (36%) combinaron actividad antimicrobiana y resistencia múltiple a antibióticos y en promedio presentaron resistencia a 10 antibióticos.

Los aislados bacterianos que combinan actividad antimicrobiana y resistencia múltiple a los antibióticos son especialmente interesantes ya que es probable que estas dos capacidades proporcionen una ventaja competitiva a las bacterias antárticas para permitirles sobrevivir en un entorno hostil. Adicionalmente, estos aislados bacterianos son nuevas fuentes potenciales de compuestos activos para el control de microorganismos patógenos.

https://doi.org/10.22352/AIP202149018
PDF

Citas

Asencio, G., Lavin, P., Alegría, K., Domínguez, M., Bello, H., González-Rocha, G., & González-Aravena, M. (2014). Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against 2 multi-resistant Gram-negative bacteria. Electronic Journal of Biotechnology, 17(1), 1-5. https://doi.org/10.1016/j.ejbt.2013.12.001

Baricz, A., Teban, A., Chiriac, C. M., Szekeres, E., Farkas, A., Nica, M., Dasc?lu, A., Opri?an, C., Lavin, P., & Coman, C. (2018). Investigating the potential use of an Antarctic variant of Janthinobacterium lividum for tackling antimicrobial resistance in a One Health approach. Scientific Reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-33691-6 Barrientos-Díaz, L., Gidekel, M., & Gutiérrez-Moraga, A. (2008). Characterization of rhizospheric bacteria isolated from Deschampsia antarctica Desv. World Journal of Microbiology and Biotechnology, 24(10), 2289-2296. https://

doi.org/10.1007/s11274-008-9743-1

Bartholomew, J. W., & Mittwer, T. (1952). The Gram stain. Bacteriological Reviews, 16(1), 1-29. https://doi.org/10.1128/ br.16.1.1-29.1952

Bratchkova, A., & Ivanova, V. (2011). Bioactive metabolites produced by microorganisms collected in Antarctica and the Arctic. Biotechnology and Biotechnological Equipment, 25(SUPPL. 4), 1-7. https://doi.org/10.5504/bbeq.2011.0116

Corsini, G., Karahanian, E., Tello, M., Fernandez, K., Rivero, D., Saavedra, J. M., & Ferrer, A. (2010). Purification and characterization of the antimicrobial peptide microcin N: Properties of the antimicrobial peptide microcin N. FEMS Microbiology Letters, 312(2), 119-125. https://doi.org/10.1111/j.1574-6968.2010.02106.x

De Souza, M.-J., Nair, S., Loka Bharathi, P. A., & Chandramohan, D. (2006). Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology, 15(4), 379-384. https://doi.org/10.1007/s10646-006- 0068-2

Jara, D., Bello-Toledo, H., Domínguez, M., Cigarroa, C., Fernández, P., Vergara, L., Quezada-Aguiluz, M., Opazo-Capurro, A., Lima, C. A., & González-Rocha, G. (2020). Antibiotic resistance in bacterial isolates from freshwater samples in Fildes Peninsula, King George Island, Antarctica. Scientific Reports, 10(1), 3145. https://doi.org/10.1038/ s41598-020-60035-0

Knights, H. E., Jorrin, B., Haskett, T. L., & Poole, P. S. (2021). Deciphering bacterial mechanisms of root colonization.

Environmental Microbiology Reports, 13(4), 428-444. https://doi.org/10.1111/1758-2229.12934

Lo Giudice, A., Brilli, M., Bruni, V., De Domenico, M., Fani, R., & Michaud, L. (2007). Bacterium–bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea): Antagonism among psychrotrophic Antarctic marine bacteria. FEMS Microbiology Ecology, 60(3), 383-396. https://doi.org/10.1111/j.1574-6941.2007.00300.x

Maida, I., Fondi, M., Papaleo, M. C., Perrin, E., Orlandini, V., Emiliani, G., de Pascale, D., Parrilli, E., Tutino, M. L., Michaud, L., Lo Giudice, A., Romoli, R., Bartolucci, G., & Fani, R. (2014). Phenotypic and genomic characterization of the Antarctic bacterium Gillisia sp. CAL575, a producer of antimicrobial compounds. Extremophiles, 18(1), 35-49. https://doi.org/10.1007/s00792-013-0590-0

McCann, C. M., Christgen, B., Roberts, J. A., Su, J.-Q., Arnold, K. E., Gray, N. D., Zhu, Y.-G., & Graham, D. W. (2019). Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environment International, 125, 497-504. https://doi.org/10.1016/j.envint.2019.01.034

Na, G., Wang, C., Gao, H., Li, R., Jin, S., Zhang, W., & Zong, H. (2019). The occurrence of sulfonamide and quinolone resistance genes at the Fildes Peninsula in Antarctica. Marine Pollution Bulletin, 149, 110503. https://doi. org/10.1016/j.marpolbul.2019.110503

Núñez-Montero, K., & Barrientos, L. (2018). Advances in antarctic research for antimicrobial discovery: A comprehensive narrative review of bacteria from antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics, 7(4). https://doi. org/10.3390/antibiotics7040090

Núñez-Montero, K., Lamilla, C., Abanto, M., Maruyama, F., Jorquera, M. A., Santos, A., Martinez-Urtaza, J., & Barrientos,

L. (2019). Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery.

Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43960-7

Orellana, P., Pavón, A., Céspedes, S., Salazar, L., Gutiérrez, A., Castillo, D., & Corsini, G. (2017). Draft Genome Sequence of Chilean Antarctic Pseudomonas sp. Strain K2I15. Genome Announcements, 5(33). https://doi.org/10.1128/ genomeA.00771-17

Pavón, A., Orellana, P., Salazar, L., Céspedes, S., Muiño, L., Gutiérrez, A., Castillo, D., & Corsini, G. (2017). Draft Genome Sequence of Bacillus sp. Strain K2I17, Isolated from the Rhizosphere of Deschampsia antarctica Desv. Genome Announcements, 5(33). https://doi.org/10.1128/genomeA.00786-17

Poblete-Morales, M., Rabert, C., Olea, A. F., Carrasco, H., Calderón, R., Corsini, G., & Silva-Moreno, E. (2020). Genome Sequence of Pseudomonas sp. Strain AN3A02, Isolated from Rhizosphere of Deschampsia antarctica Desv., with Antagonism against Botrytis cinerea. Microbiology Resource Announcements, 9(21). https://doi. org/10.1128/MRA.00320-20

Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, Ma. del C., & Glick, B. R. (2021). Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology, 10(6), 475. https:// doi.org/10.3390/biology10060475

Schiwon, K., Arends, K., Rogowski, K. M., Fürch, S., Prescha, K., Sakinc, T., Van Houdt, R., Werner, G., & Grohmann, E. (2013). Comparison of Antibiotic Resistance, Biofilm Formation and Conjugative Transfer of Staphylococcus and Enterococcus Isolates from International Space Station and Antarctic Research Station Concordia. Microbial Ecology, 65(3), 638-651. https://doi.org/10.1007/s00248-013-0193-4

Segawa, T., Takeuchi, N., Rivera, A., Yamada, A., Yoshimura, Y., Barcaza, G., Shinbori, K., Motoyama, H., Kohshima, S., & Ushida, K. (2013). Distribution of antibiotic resistance genes in glacier environments: Antibiotic resistance genes in snow and ice. Environmental Microbiology Reports, 5(1), 127-134. https://doi.org/10.1111/1758-2229.12011

Silva, T. R., Duarte, A. W. F., Passarini, M. R. Z., Ruiz, A. L. T. G., Franco, C. H., Moraes, C. B., de Melo, I. S., Rodrigues, R. A., Fantinatti-Garboggini, F., & Oliveira, V. M. (2018). Bacteria from Antarctic environments: Diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biology, 41(7), 1505-1519. https:// doi.org/10.1007/s00300-018-2300-y

Tedesco, P., Maida, I., Esposito, F. P., Tortorella, E., Subko, K., Ezeofor, C. C., Zhang, Y., Tabudravu, J., Jaspars, M., Fani, R., & De Pascale, D. (2016). Antimicrobial activity of monoramnholipids produced by bacterial strains isolated from the Ross Sea (Antarctica). Marine Drugs, 14(5). https://doi.org/10.3390/md14050083

Teixeira, L. C. R. S., Peixoto, R. S., Cury, J. C., Sul, W. J., Pellizari, V. H., Tiedje, J., & Rosado, A. S. (2010). Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISME Journal, 4(8), 989-1001. https://doi.org/10.1038/ismej.2010.35

Tomova, I., Stoilova-Disheva, M., Lazarkevich, I., & Vasileva-Tonkova, E. (2015). Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Frontiers in Life Science, 8(4), 348-357. https://doi.org/10.1080/21553769.2015.1044130

Van Goethem, M. W., Pierneef, R., Bezuidt, O. K. I., Van De Peer, Y., Cowan, D. A., & Makhalanyane, T. P. (2018). A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome, 6(1), 40. https://doi. org/10.1186/s40168-018-0424-5

Weinstein, M. P. & Clinical and Laboratory Standards Institute. (2018). Performance standards for antimicrobial disk susceptibility tests.

Wong, C., Tam, H., Alias, S., González, M., González-Rocha, G., & Domínguez-Yévenes, M. (2011). Pseudomonas and Pedobacter isolates from King George Island inhibited the growth of foodborne pathogens. Polish Polar Research, 32(1), 3-14. https://doi.org/10.2478/v10183-011-0003-y

Yuan, K., Yu, K., Yang, R., Zhang, Q., Yang, Y., Chen, E., Lin, L., Luan, T., Chen, W., & Chen, B. (2019). Metagenomic characterization of antibiotic resistance genes in Antarctic soils. Ecotoxicology and Environmental Safety, 176, 300-308. https://doi.org/10.1016/j.ecoenv.2019.03.099

Zhou, L., Song, C., Li, Z., & Kuipers, O. P. (2021). Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genome-based analysis of their antimicrobial biosynthetic potential. BMC Genomics, 22(1), 29. https:// doi.org/10.1186/s12864-020-07346-8

Zhu, Y.-G., Zhao, Y., Zhu, D., Gillings, M., Penuelas, J., Ok, Y. S., Capon, A., & Banwart, S. (2019). Soil biota, antimicrobial resistance and planetary health. Environment International, 131, 105059. https://doi.org/10.1016/j. envint.2019.105059

Znój, A., Gawor, J., Gromadka, R., Chwedorzewska, K. J., & Grzesiak, J. (2021). Root-Associated Bacteria Community Characteristics of Antarctic Plants: Deschampsia antarctica and Colobanthus quitensis—a Comparison. Microbial Ecology. https://doi.org/10.1007/s00248-021-01891-9

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2022 Anales del Instituto de la Patagonia

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...